翻訳と辞書
Words near each other
・ Quantum convolutional code
・ Quantum Corporation
・ Quantum correlation
・ Quantum cosmology
・ Quantum coupling
・ Quantum critical point
・ Quantum cryptography
・ Quantum cylindrical quadrupole
・ Quantum Darwinism
・ Quantum decoherence
・ Quantum defect
・ Quantum depolarizing channel
・ Quantum Detectors
・ Quantum differential calculus
・ Quantum digital signature
Quantum dilogarithm
・ Quantum dimer models
・ Quantum discord
・ Quantum dissipation
・ Quantum dot
・ Quantum dot cellular automaton
・ Quantum dot display
・ Quantum dot laser
・ Quantum dot solar cell
・ Quantum dynamical semigroup
・ Quantum dynamics
・ Quantum economics
・ Quantum Effect Devices
・ Quantum efficiency
・ Quantum electrochemistry


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Quantum dilogarithm : ウィキペディア英語版
Quantum dilogarithm

In mathematics, the quantum dilogarithm also known as q-exponential is a special function defined by the formula
:
\phi(x)\equiv(x;q)_\infty=\prod_^\infty (1-xq^n),\quad |q|<1

Thus in the notation of the page on q-exponential mentioned above, \phi(x)=E_q(x)^ .
Let u,v be “q-commuting variables”, that is elements of a suitable
noncommutative algebra satisfying Weyl’s relation uv=qvu. Then, the quantum dilogarithm
satisfies Schützenberger’s identity
:
\phi(u) \phi(v)=\phi(u + v)

Faddeev-Volkov's identity
:
\phi(v) \phi(u)=\phi(u +v -vu)

and Faddeev-Kashaev's identity
:
\phi(v) \phi(u)=\phi(u)\phi(-vu)\phi(v)

The latter is known to be a quantum generalization of Roger's five term dilogarithm identity.
Faddeev's quantum dilogarithm \Phi_b(w) is defined by the following formula:
: \Phi_b(z)=\exp
\left(
\frac\int_C
\frac}
\frac
\right)
where the contour of integration C goes along the real axis outside a small neighborhood of the origin and deviates into the upper half-plane near the origin. Ludvig Faddeev discovered the quantum pentagon identity:
: \Phi_b(\hat p)\Phi_b(\hat q)
=
\Phi_b(\hat q)
\Phi_b(\hat p+ \hat q)
\Phi_b(\hat p)

where \hat p and \hat q are (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation
:(p,\hat q )=\frac1}(-e^)})}
valid for Im b^2>0.
== References ==

*
*
*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Quantum dilogarithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.